(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^3).
The TRS R consists of the following rules:
mul0(Cons(x, xs), y) → add0(mul0(xs, y), y)
add0(Cons(x, xs), y) → add0(xs, Cons(S, y))
mul0(Nil, y) → Nil
add0(Nil, y) → y
goal(xs, ys) → mul0(xs, ys)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
mul0(Cons(z0, z1), z2) → add0(mul0(z1, z2), z2)
mul0(Nil, z0) → Nil
add0(Cons(z0, z1), z2) → add0(z1, Cons(S, z2))
add0(Nil, z0) → z0
goal(z0, z1) → mul0(z0, z1)
Tuples:
MUL0(Cons(z0, z1), z2) → c(ADD0(mul0(z1, z2), z2), MUL0(z1, z2))
MUL0(Nil, z0) → c1
ADD0(Cons(z0, z1), z2) → c2(ADD0(z1, Cons(S, z2)))
ADD0(Nil, z0) → c3
GOAL(z0, z1) → c4(MUL0(z0, z1))
S tuples:
MUL0(Cons(z0, z1), z2) → c(ADD0(mul0(z1, z2), z2), MUL0(z1, z2))
MUL0(Nil, z0) → c1
ADD0(Cons(z0, z1), z2) → c2(ADD0(z1, Cons(S, z2)))
ADD0(Nil, z0) → c3
GOAL(z0, z1) → c4(MUL0(z0, z1))
K tuples:none
Defined Rule Symbols:
mul0, add0, goal
Defined Pair Symbols:
MUL0, ADD0, GOAL
Compound Symbols:
c, c1, c2, c3, c4
(3) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
GOAL(z0, z1) → c4(MUL0(z0, z1))
Removed 2 trailing nodes:
ADD0(Nil, z0) → c3
MUL0(Nil, z0) → c1
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
mul0(Cons(z0, z1), z2) → add0(mul0(z1, z2), z2)
mul0(Nil, z0) → Nil
add0(Cons(z0, z1), z2) → add0(z1, Cons(S, z2))
add0(Nil, z0) → z0
goal(z0, z1) → mul0(z0, z1)
Tuples:
MUL0(Cons(z0, z1), z2) → c(ADD0(mul0(z1, z2), z2), MUL0(z1, z2))
ADD0(Cons(z0, z1), z2) → c2(ADD0(z1, Cons(S, z2)))
S tuples:
MUL0(Cons(z0, z1), z2) → c(ADD0(mul0(z1, z2), z2), MUL0(z1, z2))
ADD0(Cons(z0, z1), z2) → c2(ADD0(z1, Cons(S, z2)))
K tuples:none
Defined Rule Symbols:
mul0, add0, goal
Defined Pair Symbols:
MUL0, ADD0
Compound Symbols:
c, c2
(5) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
goal(z0, z1) → mul0(z0, z1)
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
mul0(Cons(z0, z1), z2) → add0(mul0(z1, z2), z2)
mul0(Nil, z0) → Nil
add0(Cons(z0, z1), z2) → add0(z1, Cons(S, z2))
add0(Nil, z0) → z0
Tuples:
MUL0(Cons(z0, z1), z2) → c(ADD0(mul0(z1, z2), z2), MUL0(z1, z2))
ADD0(Cons(z0, z1), z2) → c2(ADD0(z1, Cons(S, z2)))
S tuples:
MUL0(Cons(z0, z1), z2) → c(ADD0(mul0(z1, z2), z2), MUL0(z1, z2))
ADD0(Cons(z0, z1), z2) → c2(ADD0(z1, Cons(S, z2)))
K tuples:none
Defined Rule Symbols:
mul0, add0
Defined Pair Symbols:
MUL0, ADD0
Compound Symbols:
c, c2
(7) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MUL0(Cons(z0, z1), z2) → c(ADD0(mul0(z1, z2), z2), MUL0(z1, z2))
We considered the (Usable) Rules:none
And the Tuples:
MUL0(Cons(z0, z1), z2) → c(ADD0(mul0(z1, z2), z2), MUL0(z1, z2))
ADD0(Cons(z0, z1), z2) → c2(ADD0(z1, Cons(S, z2)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ADD0(x1, x2)) = 0
POL(Cons(x1, x2)) = [1] + x2
POL(MUL0(x1, x2)) = x1
POL(Nil) = 0
POL(S) = 0
POL(add0(x1, x2)) = 0
POL(c(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(mul0(x1, x2)) = 0
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
mul0(Cons(z0, z1), z2) → add0(mul0(z1, z2), z2)
mul0(Nil, z0) → Nil
add0(Cons(z0, z1), z2) → add0(z1, Cons(S, z2))
add0(Nil, z0) → z0
Tuples:
MUL0(Cons(z0, z1), z2) → c(ADD0(mul0(z1, z2), z2), MUL0(z1, z2))
ADD0(Cons(z0, z1), z2) → c2(ADD0(z1, Cons(S, z2)))
S tuples:
ADD0(Cons(z0, z1), z2) → c2(ADD0(z1, Cons(S, z2)))
K tuples:
MUL0(Cons(z0, z1), z2) → c(ADD0(mul0(z1, z2), z2), MUL0(z1, z2))
Defined Rule Symbols:
mul0, add0
Defined Pair Symbols:
MUL0, ADD0
Compound Symbols:
c, c2
(9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^3)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ADD0(Cons(z0, z1), z2) → c2(ADD0(z1, Cons(S, z2)))
We considered the (Usable) Rules:
mul0(Nil, z0) → Nil
add0(Cons(z0, z1), z2) → add0(z1, Cons(S, z2))
add0(Nil, z0) → z0
mul0(Cons(z0, z1), z2) → add0(mul0(z1, z2), z2)
And the Tuples:
MUL0(Cons(z0, z1), z2) → c(ADD0(mul0(z1, z2), z2), MUL0(z1, z2))
ADD0(Cons(z0, z1), z2) → c2(ADD0(z1, Cons(S, z2)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ADD0(x1, x2)) = [1] + x1
POL(Cons(x1, x2)) = [1] + x2
POL(MUL0(x1, x2)) = x13 + x12·x2
POL(Nil) = 0
POL(S) = 0
POL(add0(x1, x2)) = x1 + x2
POL(c(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(mul0(x1, x2)) = x1·x2
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
mul0(Cons(z0, z1), z2) → add0(mul0(z1, z2), z2)
mul0(Nil, z0) → Nil
add0(Cons(z0, z1), z2) → add0(z1, Cons(S, z2))
add0(Nil, z0) → z0
Tuples:
MUL0(Cons(z0, z1), z2) → c(ADD0(mul0(z1, z2), z2), MUL0(z1, z2))
ADD0(Cons(z0, z1), z2) → c2(ADD0(z1, Cons(S, z2)))
S tuples:none
K tuples:
MUL0(Cons(z0, z1), z2) → c(ADD0(mul0(z1, z2), z2), MUL0(z1, z2))
ADD0(Cons(z0, z1), z2) → c2(ADD0(z1, Cons(S, z2)))
Defined Rule Symbols:
mul0, add0
Defined Pair Symbols:
MUL0, ADD0
Compound Symbols:
c, c2
(11) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(12) BOUNDS(1, 1)